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Abstract. Non-negative matrix factorization (NMF) and its variants have
recently been successfully used as dimensionality reduction techniques
for identification of the materials present in hyperspectral images. We
study a recently introduced variant of NMF called non-negative matrix
underapproximation (NMU): it is based on the introduction of underapprox-
imation constraints, which enables one to extract features in a recursive
way, such as principal component analysis, but preserving non-negativity.
We explain why these additional constraints make NMU particularly
well suited to achieve a parts-based and sparse representation of the
data, enabling it to recover the constitutive elements in hyperspectral
images. Both �2-norm and �1-norm–based minimization of the energy
functional are considered. We experimentally show the efficiency of this
new strategy on hyperspectral images associated with space object ma-
terial identification, and on HYDICE and related remote sensing images.
C© 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3533025]

Subject terms: hyperspectral images; non-negative matrix factorization; underap-
proximation; sparsity; dimensionality reduction; segmentation; spectral unmixing;
remote sensing; biometrics.

Paper 100686PRR received Aug. 26, 2010; revised manuscript received Nov. 5,
2010; accepted for publication Nov. 5, 2010; published online Feb. 14, 2011.

1 Introduction
A crucial aspect of hyperspectral image analysis is the iden-
tification of materials present in an object or scene be-
ing imaged. Dimensionality reduction techniques, such as
principal component analysis (PCA), are widely used as a
preprocessing step in order to reducing the computational
cost while keeping the pertinent information. In this con-
text, it is often preferable to take advantage of the intrinsic
properties of hyperspectral data: each image corresponds to
a wavelength, and the spectral signature of each pixel results
from the additive combination of the non-negative spectral
signatures of its constitutive materials. Taking these non-
negativity constraints into account enhances interpretability
of the extracted factors. This can be done using the non-
negative matrix factorization1 (NMF) technique, generally
formulated as the following optimization problem: given
a m×n real non-negative matrix M and a positive integer
r < min(m, n), find two real non-negative matrices U and V
of dimensions m×r and n×r in order to minimize the sum of
the squared entries of M − U V T ,

min
U,V

‖M − U V T ‖2
F such that U ≥ 0 and V ≥ 0. (1)

NMF has been successfully used in many applications (e.g.,
see the survey2), including general clustering, general images
processing, text mining, air emission control, microarray data
analysis, food quality and safety analysis, face recognition,
as well as multispectral and hyperspectral data analysis.

Assuming that the matrix M is constructed as follows:
each 2-D image corresponding to a wavelength is vectorized
and is a column mj of M and each row mi of M corresponds
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to the spectral signature of a pixel; the above decomposition
can be interpreted as follows:

mi ≈
∑

k

ui
k υT

k ∀i, (2)

i.e., the spectral signature of each pixel (mi, a row of M) is
approximated with a non-negative linear combination (with
weights ui

k , representing abundances) of end-members’ sig-
natures (υk, columns of V) which hopefully correspond to the
signatures of the constituent materials of the hyperspectral
image.

NMF is an additive linear model for non-negative data and
has been observed to be particularly well suited to achieve
a parts-based and sparse representation, enhancing inter-
pretability of the decomposition. [NMF is closely related
to an older approach based on the geometric interpretation
of the distribution of spectral signatures: they are located
inside a low-dimensional simplex which vertices are the
pure pixel signatures (i.e., the signatures of each individ-
ual material).3, 4] This model has been successfully applied
for identification of the materials and the spectral unmixing
in hyperspectral images.5, 6 However, NMF features some
drawbacks, including, in particular, the following:

1. Equation (1) is a NP-hard nonlinear optimization prob-
lem with many local minimizers.7 In practice, Eq. (1) is
solved using iterative schemes based on nonlinear opti-
mization techniques (see Ref. 8, and references therein),
and only convergence to stationary points of Eq. (1) is
typically guaranteed.

2. The optimal solution is, in general, nonunique,
which makes the problem ill-posed.9 (Any invert-
ible matrix D such that UD ≥ 0 and (VD–T) ≥ 0
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Fig. 1 Probability for at least one column of V ′ to have one zero element, while another column has a zero at the same position for n = 210,
assuming that (i) V is randomly generated and (ii) V ′ contains n zeros which are randomly distributed with uniform distribution (with at least one
zero by column).

generates an equivalent solution.) Additional con-
straints are often added to reduce the degrees of free-
dom (e.g., smoothness,5 sparsity,10 orthogonality,11, 12

minimum-volume,13 sum-to-one constraint of the rows
of U,14 etc.).

3. One needs to recompute a solution from scratch when
the rank of the approximation is modified.

In this paper, we use non-negative matrix underapproxi-
mation (NMU), a new variant of NMF that overcomes some
of its drawbacks (above-listed drawbacks 2 and 3), as a di-
mensionality reduction technique to analyze hyperspectral
data. (Unless P = NP, drawback 1 cannot be “resolved” be-
cause the underlying problem of spectral unmixing is of com-
binatorial nature15 and can be shown to be equivalent to a NP-
hard problem.7) In Sec. 2, we study NMU as an optimization
problem using �2-norm minimization: we implement an al-
gorithm proposed in Ref. 16 based on Lagrangian relaxation
and propose a more robust version using a proper initializa-
tion and a safety procedure (see algorithm �2-NMU). We then
give some theoretical evidence that NMU is in fact able to
detect materials in hyperspectral data and illustrate this with
a simple example. In Sec. 3, we explain why �1-norm–based
minimization is theoretically more appealing because it is
potentially able to extract the materials in hyperspectral data
in a more efficient and robust way. An algorithm is proposed
with the same computational complexity as the one presented
in Sec. 2 for �2-norm. Finally, in Sec. 4, we experimentally
show the efficiency of these new strategies on hyperspectral
images associated with space object material identification,
and on HYDICE remote sensing images. Finally, a rather
different type of example, related to biometric identification,
is provided to illustrate the diversity of NMU applications in
spectral imaging. (A preliminary and abbreviated conference
version of this paper was published in Ref. 17.)

1.1 Notation
R

m×n is the set of real matrices of dimension m by n; for
A ∈ R

m×n , we denote aj as the j’th column of A, ai the i’th row
of A, and ai

j the entry at position (i, j); for b ∈ R
m×1 = R

m ,
we denote bi as the i’th entry of b. R

m×n
+ is the set R

m×n with
componentwise non-negative entries. The cardinality of a set
S is denoted |S|. supp(x) denotes the support of x [i.e., the set
on nonzero entries of x]; and supp(x) its complement (i.e.,

the sparsity pattern of x). ‖.‖0 is the �0-norm, where ‖x‖0
is the cardinality of supp(x). AT is the transpose of A. ‖.‖2
is the �2-norm with ‖b‖2

2 = bT b; ‖.‖F is the related matrix
norm, called Frobenius norm, with ‖A‖2

F = �i, j (ai
j )

2 and
〈A, B〉 = �i, j ai

j b
i
j is the corresponding scalar product. ‖.‖1

is the �1-norm with ‖A‖1 = �i, j |ai
j |.

2 NMU
Combining the Perron–Frobenius and Eckart–Young
theorems,18 it is easy to find an optimal non-negative rank-
one approximation of a non-negative matrix. Therefore, the
rank-one NMF problem can be solved in polynomial time
(e.g., taking the absolute value of the first rank-one fac-
tor generated by the singular value decomposition). One
would then be tempted to use this result to compute an
NMF one rank-one factor at a time. However, when the
first rank-one approximation is subtracted from the original
matrix, we obtain a residual that contains negative entries,
and this makes the recursive approach unpractical. Adding
underapproximation constraints makes this idea possible;
solving at each step

min
x∈R

m+,y∈R
n+
‖M − xyT ‖2

F such that xyT ≤ M (3)

and ending up with R = M – xyT ≥ 0, which can be under-
approximated as well, etc. This problem is referred to as an
NMU and was introduced in Refs. 16 and 19. It has been
shown to achieve better part-based representation of non-
negative data because the underapproximations constraints
require the extracted part to really be common features of the
original data. We will see how this property enables NMU to
extract constitutive materials in hyperspectral images.

Because only a rank-one matrix is computed at each step,
[Eq. (3)] is, in general, well posed in the sense that the
optimal solution is unique (up to a scaling factor). [Note
that NMF with r = 1 is also well posed; in fact, the opti-
mal solution is unique if the maximum singular value of M
[σ 1(M)] is strictly greater than the second biggest singular
value [σ 2(M) < σ 1(M)], cf. singular value decomposition.18]
In fact, for any rank-one non-negative matrix A, there ex-
ists one and only one (u, v) ≥ 0 such that ‖u‖2 = 1 and
A = uvT. In our experiments, we observed that NMU is
much less sensitive to initialization and that, in general,
when we allow several restarts of the algorithm with different
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Fig. 2 Sample of images of the data matrix M: (a) clean, (b) with mixed pixels.

initializations, it ends up with similar solutions (hopefully,
close to the optimum). This is, in general, not the case with
the standard NMF formulation because of non-uniqueness.9

2.1 Algorithm for Rank-One Non-Negative
Underapproximation

Equation (3) is convex in x and y separately, and the corre-
sponding optimal solutions can actually be trivially computed
when x ≥ 0 and y ≥ 0,

x∗ = argminx≥0,xyT ≤M ‖M − xyT ‖F ,

x∗
i = min

{ j | y j �=0}

{
mi

j

y j

}
∀i, (4)

and

y∗ = argminy≥0,xyT ≤M ‖M − xyT ‖F ,

y∗
j = min

{i | xi �=0}

{
mi

j

xi

}
∀ j, (5)

and this corresponds to the stationary conditions of Eq. (3).
Note that these conditions are the same for other objective
functions, such as the �1-norm of the error, which will be
analyzed in Sec. 3.

Alternating optimization (i.e., updating x and y alterna-
tively, which is also referred to as block-coordinate descent)
does not generate satisfactory results: the algorithm will stop
after one or two updates of x and y and is then unable to locate
good solutions, potentially far away from the initialization.
The reason is that feasibility is imposed at each step and so-
lutions are rapidly blocked on the boundary of the feasible
domain.

A Lagrangian relaxation scheme has been proposed16 to
solve Eq. (3). It works as follows: let � ∈ R

m×n
+ be the La-

grangian multipliers associated with the underapproxima-
tion constraints and write the corresponding Lagrangian dual

Fig. 3 Ideal Case. From top to bottom: four original images (i.e.,
columns of U), basis elements obtained with NMF, and with NMU.

problem as

sup
�∈R+m×n

min
x∈R+m

y∈R+n

‖M − xyT ‖2
F − 2

〈
�, M − xyT

〉

= ‖(M − �) − xyT ‖2
F − ‖�‖2

F . (6)

A possible way to solve Eq. (6) is to alternate optimization
over x, y, and �: the optimal solution for x and y can be
written in closed-form (cf. steps 6 and 7 of Algorithm �2-
NMU) while � is updated with a subgradient type update
(step 10). Note that the problem of optimizing both x and
y reduces to a rank-one non-negative factorization problem
[same problem as Eq. (1)], where M might have negative
entries; in this case M – �) which is NP-hard.20

We propose the following two improvements, which make
the algorithm more robust:

1. (x, y) are initialized with the optimal rank-one solu-
tion of the problem without the underapproximation
constraints (i.e., the optimal non-negative rank-one
approximation of the residual, see step 2, correspond-
ing to � = 0, which we compute with the singular
value decomposition); � is initialized with the non-
negative part of the residual matrix (step 4).

2. If � is too large, then it might happen that x and/or y
are set to zero leading to a trivial stationary point. We
propose to reduce the value of � if that happens and
to set x and y to their old values (step 12).

Because the algorithm is not guaranteed to generate a fea-
sible solution, only the non-negative part of the residual is
considered (step 15). [Note that this feature is actually an
advantage for practical applications. In fact, this gives the
algorithm some flexibility when dealing with noisy data.
However, one can obtain a feasible stationary point by us-
ing updates Eqs. (4) and (5) as a postprocessing step.] Also
note that the updates of x and y share some similarities with
the power method (applied to M − �, with projection on
the non-negative orthant), which computes the maximum
singular value and its corresponding left and right singular
vectors.18 It seems that Algorithm �2-NMU behaves similarly
as the power method in the sense that it converges in general
relatively fast. Extensive experiments on a host of data and
applications allow us to conclude 100 iterations at each step
of the recursion is sufficient (i.e., maxiter = 100, which will
be used for the numerical experiments; see Sec. 4).

Algorithm �2-NMU

Require: M ∈ R
m×n
+ , r > 0, maxiter.

Ensure: (U, V) ∈ R
m×r
+ ×R

n×r
+ s.t. UV T�M.

1. for k = 1: r do

2. [x, y] = optimal rank-one approximation (M);

3. uk←x; υk ←y;
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4. � ← max
[
0, −(M − xyT )

]
;

5. for p = 1 : maxiter do

6. x ← max

[
0,

(M − �)y

‖y‖2
2

]
;

7. y ← max

[
0,

(M − �)T x

‖x‖2
2

]
;

8. if x �= 0 and y �= 0 then

9. uk ← x; υk ← y;

10. � ← max
[
0, � − (1/p) (M − xyT )

]
;

11. else

12. � ← (�/2); x ← uk ; y ← υk ;

13. end if

14. end for

15. M = max
(
0, M − uk υT

k

)
;

16. end for

2.2 Hyperspectral Data Analysis in the Ideal Case
If we assume that each pixel contains only one material, then
the corresponding matrix has the following form:

Assumption 1. M ∈ R
m×n
+ with M = U V T where

1. U ∈ {0, 1}m×r is a binary matrix of dimension m by r, with
r ≤ min(m, n), its columns are orthogonal:

uT
i u j = 0,∀i �= j and uT

i ui �= 0,∀i,

and there is one and only one nonzero element in each row
of U

ui
k = 1 ⇔ pixel i contains material k.

2. V ∈ R
n×r
+ is of full-rank r.

Of course, recovering U and V in these settings is trivial
and, in practice, because of blurring and other mixing effects,
limited resolution, and mixed materials, the spectral signature
of each pixel will be a mixture of spectral signatures of several
materials (in particular, pixels located at the boundary of ma-
terials) plus noise. However, classifying each pixel in a single
category amounts to approximating M with a matrix satisfy-
ing Assumption 1. This problem is referred to as orthogonal
NMF (oNMF) and is equivalent to k-means clustering.11

We now show that the underapproximation technique is
able to retrieve the underlying structure in the ideal case,
when each pixel corresponds to only one material. This will
shed some light on the behavior of the above recursive algo-
rithm based on underapproximations and justify its efficiency
when dealing with nonideal hyperspectral images.

2.2.1 First rank-one factor
As for PCA, the first rank-one factor of NMU will reduce the
error the most; and we have the following results:

Lemma 1. Let (x, y) be a nontrivial stationary point of
Eq. (3) (i.e., x �= 0 and y �= 0), then the residual R = M – xyT

has at least one zero by row and by column.
Proof. The proof follows directly from Eqs. (4) and (5).

Lemma 2. Let (x, y) be a nontrivial stationary point of
Eq. (3) for M = UVT satisfying Assumption 1, then the resid-
ual R = M – xyT can be written as R = U V ′T for some V ′ ≥ 0.

Fig. 4 Nonideal Case. From top to bottom: four original images, basis
elements obtained with NMF, and with NMU.

Proof. Because columns of U are binary and orthogonal,
each row of M is equal to a column of V. Therefore, the
entries of x corresponding to the rows of M equal to each
other must take the same value [i.e., ∀i ∈ {1, 2, . . . , r},∀k,
l ∈ supp(ui ) : xk = xl .] In fact, one can check that for y �=
0, the solution of Eq. (4) is unique. It follows that x = Ud,
for some d ∈ R

m
+, and then R = UVT – UdyT = U(V – ydT)T.

The facts that R is non-negative and that U is binary and
orthogonal implies that V ′ = V − ydT ≥ 0.

Corollary 1. Let (x, y) be a nontrivial stationary point of
(NMU) and M > 0, then x > 0 and y > 0. Moreover, the
residual R = M – xyT can be written as R = U V ′T for some
V′ ≥ 0 with at least one zero by row and by column in V ′.
Proof. Positivity of x and y follows directly from
Eqs. (4) and (5) whereas structure of the residual matrix
R is a consequence of Lemma 1 and 2.

Let us use the notations of Corollary 1. We observe that it is
typically very unlikely for the sparsity pattern of a column of
V ′ to be contained in the sparsity pattern of another column,
i.e., that

I = supp(υ ′
i ) ⊂ supp(υ ′

j ), for some i �= j, (7)

for some nonempty set I ⊂ {1, 2, . . . , n}. There are two basic
reasons for this fact

1. We know there is at least one zero by row and by column
in V ′ (Corollary 1). Clearly,

υ ′
i (I ) = υ ′

j (I ) = 0 ⇔ υi (I ) = α υ j (I ),

for some constant α > 0. In fact, recall that υ ′
i= υi − di y so that υ ′

i (I ) = υ ′
j (I ) = 0 if and only

if υ i(I) – djy(I) = υ j(I) – djy(I) = 0 [i.e., υ i(I) =
(di/dj)υ j(I)]. If |I| ≥ 2 and if we assume that V is
generated randomly, then the probability of having
υ i(I) = αυ j(I) is zero (randomly generated vectors in
two dimensions or more are multiple of each other with
probability zero). If |I| = 1, then it means that at least
one column of V ′ has only one zero element. We know
that there are at least n zeros in V ′ (one by row) and at
least one zero in each of the r columns of V ′. There are
still at least (n – r) zeros to be placed in the r columns
of V ′. Assuming there are only (n – r) zeros (typically,
there are much more zeros in the residual) and that they
are distributed randomly with uniform distribution
among the columns of V ′, then we can compute the
probability of having one column of V ′ with only one
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Fig. 5 Basis elements (columns of matrix U) for the Urban dataset extracted with �2-NMU. Dark tones indicate a strong presence of a pixel in a
cluster (0 is white, 1 black), and numbers indicate the position of the factor in the NMU decomposition.

zero element, and with its sparsity pattern contained
in the support of another column [i.e., case |I| = 1 in
Eq. (7)]. [Note: We added up the probabilities to have i
columns with only one zero element multiplied by the
probability for at least one of these zeros to be located at
the same position of another one (either in one of these
i columns with one zero, or in the remaining r – i).]
Figure 1 displays this probability for n = 210 (which
is the number of spectral bands for some HYDICE
images we consider, cf. Sec. 4) with respect to r
(number of materials). For example, for r ≤ 25 (i.e.,
<25 materials present in the image), the probability
for at least one column of V ′ to have only one zero
entry, and for another column of V ′ to have a zero at
the same position is <10–2.

2. In practice, it is observed that the zeros are not dis-
tributed randomly among the columns of V ′. Typically,

the columns of V ′ have the same number of zeros
(∼n/r), located at different positions.
Using another objective function, the sum of the loga-
rithms of the ratios between the entries of xyT and M
> 0, it can be proved19 that the problem is equivalent
to an assignment problem. In fact, using a logarithmic
change of variables, we have the problem

min
x>0,y>0

∑
i j

log

(
mi

j

xi y j

)
s.t. xi y j ≤ mi

j

which is equivalent to

max
x>0,y>0

n
∑

i

log(xi ) + m
∑

j

log(y j )

s.t. log(xi ) + log(y j ) ≤ log(mi
j ). (8)

Optical Engineering February 2011/Vol. 50(2)027001-5

Downloaded from SPIE Digital Library on 31 Oct 2011 to 129.97.93.204. Terms of Use:  http://spiedl.org/terms



Gillis and Plemmons: Dimensionality reduction, classification, and spectral mixture analysis. . .

Fig. 6 Basis elements of �1-NMU for the Urban dataset extracted, identified as in Fig. 5.

If M is a square matrix (m = n) and (x, y) an opti-
mal solution of Eq. (8), then the zeros of R = M – xyT

= UV′ will be located on its diagonal (up to a permutation)
and no columns will share common zeros. [Note: This is
related to the way assignment problems are solved.21 One
can show that a solution (x, y) of Eq. (8) is optimal if and
only if the matrix D with di j = log(mi

j ) − log(xi ) − log(y j )
has, up to a permutation, zeros on its diagonal (this is how
the Hungarian method used to solve assignment problems
has been designed).] When using the Frobenius norm as an
objective function, it seems that the zeros follow the same
sparsity pattern, even though we do not have a proof for this
fact. However, note that Eq. (8) shares the same stationarity
conditions as Eq. (3) [see Eqs. (4) and (5)], so that optimal
solutions of Eq. (8) are stationary points of Eq. (3).

Conclusion. After the first NMU recursion, the residual R
can be written in the same form as M = UVT (cf. Assump-
tion 1) with R = U V ′T , and it is highly probable that the

columns of V ′ will have disjoint sparsity patterns. This will
be experimentally confirmed in Sec. 4.

2.2.2 Next rank-one factors
Assuming that the columns of V in Assumption 1 have dis-
joint sparsity patterns, we show that the recursion outlined
above will eventually locate each material individually.

Theorem 1. Let (x, y) be a nontrivial stationary point
of (NMU) for M = UVT satisfying Assumption 1 and the
columns of V have disjoint sparsity patterns, i.e., supp(υi ) �⊆
supp(υ j ) ∀i �= j . Then R = M – xyT = U V ′, with x = Ud for
some d ∈r

+ so that V ′ = V – ydT ≥ 0. Moreover,

supp(x) = ∪i∈� suppi (ui ), for some � ⊂ {1, 2, . . . , r}

and

� = {i} ⇔ υ ′
i = 0 ⇔ di y = υi , 1 ≤ i ≤ r. (9)
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Fig. 7 Postprocessed basis elements of NMU for Urban dataset with (a) �2-norm and (b) �1-norm. Light tones represent high degree of
membership.

Proof. The first part is a consequence of Corollary 1. It re-
mains to show that Eq. (9) holds. The second equivalence
is trivial since υ ′

i = υi − di y is equal to zero for some i if
and only if diy = υ i. For the first equivalence, observe that
diy =υ i implies that �= {i} because of the underapproxima-
tion constraints and because the columns of V have disjoint
sparsity patterns [cf. Eq. (4)]. In fact, because y has the same
support as υi , we have ∀ j �= i, ∃k s.t. υ j (k) = 0 and y(k) >

0 implying dj = 0. Finally, it is clear that for � = {i}, the
solution obtained with Eq. (5) is y = (1/di)υ i.

Theorem 1 implies that, at each step of the NMU recur-
sion, a set of materials are extracted together. Moreover, a
material is extracted alone if and only if the corresponding
column of V ′ is set to zero. Because the recursive approach
outlined above will eventually end up with a zero matrix (say,
after ru steps), we will have

Fig. 8 End-member extraction for the Urban dataset: �2-NMU (gray solid) and �1-NMU (dashed) versus six end members from the image using
N-FINDR5,33 plus manual adjustment (dark solid) from Ref. 25. The x-axis gives the wavelength bands while y-axis gives the reflectance values
(intensities of reflected light).
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Fig. 9 Spectral signatures of grass: weighted average of the spectral
signatures of the pixels present in basis elements 6 and 10 of the
�1-norm solution.

M =
ru∑

i=1

xi yT
i , (10)

and under the disjoint sparsity patterns assumption (at each
step of the recursion),

∀1 ≤ i ≤ r, ∃1 ≤ j ≤ ru s.t. supp(x j ) = supp(ui ). (11)

In fact, for the residual R = U V ′ to be equal to zero, all the
columns of V ′ must be identically zero. This feature of the
NMU recursion will be experimentally verified in Sec. 4.

Remark 1. The disjoint sparsity patterns assumption is a
sufficient but not a necessary condition for exact recov-
ery. In fact, if two columns are extracted together, it is
likely that the corresponding optimal solution will not be
exactly equal to one of these two columns (because there are
linearly independent) and, therefore, at the next step it is
likely that they will have disjoint sparsity patterns.

2.3 Illustration of Basis Recovery with NMU
versus NMF

Let us construct the following synthetic data: four binary
orthogonal images of 5×5 pixels (which are the columns
of U, U ∈ {0, 1}25×4, see top image of Fig. 3) are ran-
domly mixed (V ∈ R

25×4 is randomly generated with uni-
form distribution between 0 and 1) to generate a 25×25
matrix M = U V T satisfying Assumption 1. [Note: We used
the function rand(4,25) of MATLAB R©.] Figure 2 displays
a sample of the 25 images contained in the columns of M,
which then result from the non-negative linear combination
of the columns of U.

Figure 3 displays the original images and the basis ele-
ments obtained with NMF and NMU. As was mentioned in
Sec. 2.2.1, the first rank-one factor of NMU will reduce the
error the most and we include it and list a total of five for
NMU (because each end-member has been extracted indi-
vidually after five steps, the residual error is equal to zero,
i.e., the approximation is exact; see Theorem 1).

We observe that NMF is not able to perfectly extract
the four original basis elements (even though the objective
function is equal to zero; the reason is the nonuniqueness
of the solution: NMF retrieves a mixture of the basis ele-
ments, while NMU is able to do the extraction. [Note that for
n = 25 and k = 4, the probability for two columns of V ′ to
have nondisjoint sparsity patterns is <10–8, if we assume that
the zeros are uniformly distributed and that V is randomly
generated (which is the case here); see Sec. 2.2.1.]

2.4 Hyperspectral Data Analysis in the
Nonideal Case

As we have already mentioned, practical problems do not
have the nice structure mentioned in Assumption 1 and the
spectral signature of most pixels results from a combina-
tion of several materials. What can we expect of NMU

Fig. 10 Basis elements of �2-NMU for the Urban dataset using only nine bands (bands 1, 20, 40, . . . , 160).
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Fig. 11 Basis elements of �2-NMU for the Urban dataset using only five bands (1, 41, 81, 121, 161).

in that case? When the data matrix is positive, the first
rank-one factor will still be a mixture of all materials (cf.
Lemma 1). It seems more difficult to provide theoretical
guarantees for the next factors in more general settings; this
will be a topic for further research. However, extracting a
single constitutive material would allow one to approximate
all the pixels containing it (removing this component from
their spectral signature) and, because NMU aims at extract-
ing components explaining the data as closely as possible in
order to reducing the error the most, this indicates that NMU
is incited to extract constitutive materials in nonideal cases.

For example, let us add to the matrix U in the illustration
of the previous paragraph a randomly generated matrix, uni-
formly distributed between 0 and 0.5. This means that each
pixel is now a mixture of several materials, but one mate-
rial is still predominant. Figure 4 displays the visual results:
NMF performs even worse, whereas NMU is still able to
extract the original parts fairly well. It actually provides a
soft clustering for each pixel, which will also be shown in
Sec. 4. [Note: Soft clustering means that a single element
of the dataset can be assigned to different clusters; a (non-
negative) weight being attached to each cluster (e.g., cor-
responding to the probability of the pixel to belong to the
cluster). In a hyperspectral image, it makes sense since the
pixels can be composed of different materials (the clusters)
with different abundances (the weights, summing to one).]

3 �0-Pseudo-Norm Minimization and �1-Norm
Relaxation

Ideally, each basis element extracted with the recursive ap-
proach outlined previously should correspond to a different

material present in the hyperspectral image: we would like
each extracted rank-one factor to correspond to only one ma-
terial [i.e., that only a submatrix of M (a set of rows of M)
corresponding to pixels containing the same material is ap-
proximated at each step]. Unfortunately, the �2-norm is not
appropriate for this purpose: it is very sensitive to “outliers”
(i.e., it cannot neglect some entries of the matrix M and set
only a subset of the entries of the residual error to zero). It is
more likely that it will try to approximate several materials
at the same time in order to avoid large entries in the residual
error. For this reason, we will see that the �2-norm based algo-
rithm (Algorithm �2-NMU) first extracts (in general) several
materials together.

If the �0-‘norm’ is used instead (i.e., if the number of zero
entries in the residual is maximized), one can check that for
a matrix satisfying Assumption 1, then this will lead to an
exact recovery in r steps; because extracting one material
(i.e., taking y = υi for some i at each step) will lead to the
highest number of zeros in the residual R = M – xyT (rows
corresponding to the extracted material are identically zero;
plus one zero by row and by column for the other ones). Un-
fortunately, �0-‘norm’ minimization is very difficult to work
with (nondifferentiable, nonconvex even when one factor is
fixed, i.e., ‖M − xyT ‖0 for x or y fixed). Moreover, in prac-
tice, because of noise and blur, the �0-‘norm’ would not be
appropriate because rows of M representing the same ma-
terial cannot be approximated exactly. However, its convex
relaxation, the �1-norm, is known to be less sensitive to out-
liers and is then disposed to let some entries of the error be
large in order to approximate better other entries. We will
experimentally observe, in Sec. 4, that using �1-norm allows

Fig. 12 Sample of images in the Hubble tensor with blur and noise.
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Fig. 13 The eight materials for the Hubble telescope data provided to us by NASA. From left to right: Aluminum, Solar Cell, Green Glue, Copper
Stripping, Honeycomb Side, Honeycomb Top, Black Rubber Edge, and Bolts.

us to extract materials individually in a more efficient manner
(i.e., using a smaller number of recursive steps).

3.1 Algorithm for �1-Norm Minimization
Using the idea of Lagrangian duality presented in Sec. 2.1,
we propose to solve

max
�∈R

m×n
+

min
x∈R

m+, y∈R
n+

‖(M − �) − xyT ‖1. (12)

Note that � does not correspond to the Lagrangian dual
variables of minx≥0,y≥0,xyT ≤M ‖M − xyT ‖1. However, this
formulation is closely related to the Lagrangian relaxation
and allows us to use the same derivations as for Algorithm
�2-NMU.

Fixing y and � and noting A = M – �, x can be optimized
by solving the following m independent problems:

min
xi ≥0

∥∥ai − xi y
∥∥

1 =
∑

j

∣∣ai
j − xi y j

∣∣

=
∑

j ∈ supp(y)

y j

∣∣∣∣∣ai
j

y j
− xi

∣∣∣∣∣ +
∑

j /∈ supp(y)

∣∣ai
j

∣∣,
(13)

which can be solved by computing the weighted median of z
with z j = (ai

j/y j ) ∀ j with weights yj. The same can be done
for y by symmetry, and we propose to replace updates of x
and y in Algorithm �2-NMU (steps 6 and 7) by

xi = max

{
0, weighted-median

[
(M − �)i (J )

y(J )
, y(J )

] }
∀i,

J = supp(y), (14)

and

y j = max

{
0, weighted-median

[
(M − �) j (I )

x(I )
, x(I )

]}
∀ j,

I = supp(x) (15)

The weighted median of an n dimensional vector can be com-
puted in O(n) operations (cf. Ref. 22, and references therein)
so that the algorithm can be implemented in O(mn) operations
per iteration when the data matrix M has dimension m×n.
We will refer to this algorithm as �1-NMU. The �2-NMU and
�1-NMU algorithms then have the same computational com-
plexity even though in practice �1-NMU will be slower, but
only up to a constant factor. [Note: Implementation of both al-
gorithms is available at http://www.core.ucl.ac.be/∼ngillis/.]

4 Applications to Spectral Data
In this section, Algorithm �2-NMU and its modification for
�1-norm minimization proposed in Sec. 3 (�1-NMU) are used
as dimensionality reduction techniques for hyperspectral and
multispectral data in order to achieve classification (selecting
from the basis elements the different clusters), and spectral
unmixing (using non-negative least squares). In the first part,
we carefully analyze the Urban HYDICE image (Sec. 4.2)
and a Hubble space telescope simulated image (Sec. 4.3)
developed in Ref. 6. In the second part, we provide some
visual results for aerial images of a desert region and of
the San Diego airport (Secs. 4.4.1 and 4.4.2), and for an
eye image with only four spectral bands, useful in biometric
identification systems (Sec. 4.4.3).

Fig. 14 Basis elements of NMU for the Hubble telescope dataset with added blur and noise: (a) �2-norm and (b) �1-norm.
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Table 1 Basis element obtained: cluster selection for the Urban
dataset.

Clusters Road Dirt Trees Roofs Grass Metal

�2-basis No. 18 23 3 4 6 8

�1-basis No. 16 17 2 5 6 7

4.1 Classification and Spectral Unmixing
NMU can be used as a standard dimensionality reduction
technique, and any type of postprocessing procedure can be
used to extract the constitutive parts of spectral data (e.g.,
k-means, nearest neighbor, etc.). However, we have shown
why NMU is potentially able to extract these parts automat-
ically. Therefore, the simplest approach would be to visually
select each cluster from the generated basis elements (i.e.,
manually selected the basis elements representing a single
material). We stick to this approach and select, from the
basis elements, each individual cluster: from the U matrix
obtained with NMU, we only keep a subset of the columns,
each corresponding to an individual material.

The second postprocessing step is to normalize U. In fact,
as for NMF, NMU is invariant to the scaling of the columns
of U (∀k ukυ

T
k = (αuk)(α−1υk)T ∀α > 0). Moreover, in the

context of hyperspectral image analysis, rows of U have a
physical interpretation: ui

j is the abundance of material j in
pixel i. Therefore, ui

j ≤ 1 ∀i, j and the columns of U are
normalized with

u j = u j

maxi (ui
j )

∀ j. (16)

This means that, for each rank-one factor extracted with the
NMU procedure, the maximum abundance of each pixel
for the corresponding spectral signature υk is at most 1.
Moreover, because rows of U correspond to abundances,
� j ui

j = 1 ∀i and we can scale the rows of U as follows:

ui ← ui

‖ui‖1 + ε
, ε <<< 1 (17)

so that they sum to 1 (except if they are identically zeros).
This allows us to equilibrate the relative importance of each
pixel in each basis element. With this procedure, we end up
with a soft clustering: each pixel i is composed of several
materials with the corresponding abundances given by ui.

Once the materials have been identified (by selecting a
subset of the columns of U) and the pixels have been classified
(by scaling properly the selected columns of U), one can
recover the spectral signatures of each individual material,
called the end members. A standard approach is to solve a
non-negative least-squares problem of the form

min
V ≥0

‖M − U V T ‖2
F , (18)

where the columns of U are the postprocessed basis vectors,
with dedicated algorithms (cf. Refs. 23 and 24). [Note: The
columns of V in the NMU solution do not correspond directly
to the spectral signatures of the end members because several
materials are sometimes extracted together, in particular at
the first steps of the algorithm. In order to get the spectral
signature of an end member from the NMU solution, one has
to sum up all the columns of V corresponding to a column
of U containing the desired end-member. For example, for
M > 0, the first column of V always has to be used to obtain
a spectral signature because all materials are present in the
first basis element with u1 > 0; see Corollary 1. It is therefore
more convenient and more accurate to compute the spectral
signatures by solving Eq. (18).]

4.2 Urban HYDICE Image
We consider first the Urban hyperspectral image (available
at http://www.agc.army.mil/hypercube/) taken with hyper-
spectral digital imagery collection experiment (HYDICE)
airborne sensors. We analyze the data where the noisy bands
have been removed (162 bands left, originally 210), and the
data cube has dimension 307×307×162. Figures 5 and 6 give
the basis elements of the �2- and �1-NMU decompositions.

The Urban data are mainly composed of six types of ma-
terials: road, dirt, trees, roofs, grass, and metal, as reported in
Ref. 25. Table 1 gives the index of the NMU basis elements
corresponding to single materials. Figure 7 shows the clas-
sification obtained from the basis elements obtained with
NMU (cf. Figs. 5 and 6, and Table 1). Figure 8 displays the
results of the spectral unimxing procedure for both NMU al-
gorithms (�2 and �1) which are compared to 6 end-members,
as listed as the “true” end members for this data in Ref. 25.

In this example, NMU performs relatively well and is able
to detect all the materials individually, which can then be used
to classify the pixels and finally recover the end-member sig-
natures. We also note that, as predicted, the �2-NMU needs
more recursion than �1-NMU to extract all materials individ-
ually (23 versus 17). For example, it is interesting to observe
that �1-NMU actually extracts the grass as two separate ba-
sis elements (6 and 10, cf. Fig. 6). The reason is that the
spectral signatures of the pixels in these two basis elements
differ (especially after the 100th band in the hyperspectral
image): there are two types of grass with similar spectral
signatures, and they are different enough to be assigned to
different clusters (see Fig. 9). Because �1-NMU is able to
extract parts separately in a more efficient way (cf. Sec. 3), it
is able to detect this anomaly, whereas �2-NMU is not. This
fact also provides an explanation of the differences in the
spectral signatures of the grass in Fig. 8.

4.2.1 Number of spectral bands
In Sec. 2.2, a sufficient condition was presented to recover
each material individually: the number of spectral bands (n)

Table 2 Basis elements obtained: Cluster selection for the Hubble telescope database with noise and blur (see Fig. 14).

Clusters Alum. S. Cell Glue Copper H. Side H. Top Edge Bolts

�2-basis No. 2 3 4 6 7 8 13 11

�1-basis No. 2 3 4 7 6 9 11 8
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Fig. 15 End-members for the Hubble satellite data with noise and blur. NMU with �2 (gray solid) and NMU with �1 (dashed) versus eight true
end-members (black solid).

should be sufficiently larger than the number of materials
(r). This is clearly satisfied by the Urban data used here,
because for n = 162 and r = 6, the probability to have
disjoint sparsity patterns is larger than 1 – 10–12. However,
it has also been explained why this condition is not nec-
essary; see Sec. 2.2. What happens then if we reduce the
number of bands? For example, suppose we keep only nine
bands from the 162 original clean bands of the urban data.
[Note: We selected the bands so that they are well distributed
in the spectral domain, starting from the first band and us-
ing a constant step. However, one might use more sophisti-
cated techniques (e.g., subset selection algorithms such as in
Ref. 26) or using dimensionality reduction techniques pre-
serving non-negativity (such as NMF) as a preprocessing
step. We know of no good dynamical way using NMU to
determine the minimal number of bands sufficient to capture
selected end members.] Figure 10 displays the basis ele-
ments for �2-NMU. Surprisingly, the algorithm is still able to
separate the materials: trees are recovered in basis element 2,
roofs 3, road 4 (mixed with dirt), grass 5, metal 7, and dirt 13.

When less than six bands are kept, the algorithm can-
not detect all the materials individually. Figure 11 displays
basis elements using five bands. The grass and trees are
extracted together (basis element 2) because their spectral
signatures are similar; the roads and the dirt also are extracted
together (basis element 4), as are the road and roofs (basis
element 7), whereas the roofs and the metal (ba-
sis elements 3 and 6 respectively) are extracted
individually.

Finally, it seems that, as long as the spectral signatures
of the different materials can be distinguished, the number
of spectral bands does not need to be significantly larger
than the number of materials in order for NMU to be able
to perform classification (this will also be illustrated in
Sec. 4.4.3). However, when this is not the case (e.g.,
when more noise and blur are present, or when spec-
tral signatures look alike), more spectral bands are needed
to distinguish the different materials, which seems to
be a natural requirement (this will be illustrated in
Sec. 4.3).

Fig. 16 Basis elements obtained with �2-NMU on the Hubble telescope hyperspectral image using only 12 spectral bands (1 + 9i, 0 ≤ i ≤ 11):
(a) clean image and (b) noisy and blurry image (same settings as before).
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Fig. 17 Aerial image of a desert region basis elements obtained with �2-NMU.

4.3 Simulated Hubble Space Telescope Data
Figure 12 displays some sample images of the simulated
Hubble database, which consists of 100 spectral images of
the Hubble telescope, 128×128 pixels each, with added blur
and noise.5 [Note: Point spread function on 5×5 pixels and
with standard deviation of 1, and white Gaussian noise σ
= 1% of the values of M and Poisson noise σ = 1% of
the mean value of M.]. It is composed of eight materials;
see Fig. 13. (Note: These are true Hubble satellite material
spectral signatures provided to us by the NASA Johnson
Space Center.)

Figure 14 shows the basis elements obtained with NMU,
and Table 2 gives the classification of the basis elements.
Figure 15 shows the end-member extraction: original versus
noisy and blurred.

Spectral signatures of black rubber edge and bolts are not
recovered very accurately (or not at all in the case of the
�2-norm). The reason is that they are the smallest and thinest
parts: they get mixed with surrounding materials, which make
them difficult to extract. Moreover, for the bolts, its spectral
signature is very similar to the one of copper stripping and
therefore, when noise and blur are added, they are extracted
together (basis elements 11 for �2-norm and 8 for �1-norm).

As for the Urban dataset, �2-NMU extracts more mixed
materials and therefore needs more recursions to get all
the parts separated than �1-NMU, which does a better job
(especially for the black rubber edge).

4.3.1 Number of spectral bands
Let’s reduce the number of spectral bands to 12, and compare
the basis elements obtained by �2-NMU on the clean versus
the noisy and blurry images. Figure 16 displays the basis
elements. Clearly, in the noisy and blurry case, the algorithm
is no longer able to extract all the materials. The reason is
that there are not enough spectral bands left. Because of
blur (spectral signatures of materials are mixed together) and
noise (spectral signatures are perturbed), 12 bands is not
enough to distinguish all the materials, as already explained
in Sec. 4.2.1. Quite naturally, the larger the number of bands
is, the more robust the algorithm will be with respect to noise
and blur.

4.4 Visual Experiments
In this section, we first provide some visual results for
datasets analyzed in a recent comparative study of dimension-
ality reduction techniques for hyperspectral images,27 and
for which ‘ground truth’ data is not available. [We will only
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Fig. 18 San Diego Airport basis elements obtained with �2-NMU.

display basis elements obtained with Algorithm �2-NMU be-
cause results obtained with �1-NMU are comparable.] How-
ever, it allows one to experimentally reinforce our claims
about the properties of NMU; namely that it is indeed able
to detect materials or, at least, to separate some of them.

We then display results for a multispectral image of an eye
with four spectral bands and propose a way to postprocess
the basis elements obtained with NMU in order to achieve
clustering. This biometric identification example is included
in order to illustrate the diversity of applications of NMU in
spectral imaging.

4.4.1 Aerial image of a desert region
This is a HYDICE terrain data set with 166 clean
bands (originally 210), each containing 500×307 pixels.
Figure 17 displays the first six basis elements. NMU is easily
able to extract trees (basis element 2), roads (basis element
3), and grass (basis element 6).

4.4.2 San Diego airport
The San Diego airport hyperspectral image contains 158
clean bands, and 400×400 pixels for each spectral image.
Figure 18 displays the first eight basis elements obtained by
the NMU decomposition. In this case, it is less clear what the
different materials are. It should probably be necessary to ap-
ply more sophisticated postprocessing techniques to classify
the pixels. However, we observe the following:

1. Basis elements 4, 7, and 8 contain the roofs.

2. Basis element 6 mostly contains roads (including the
parking lots).

3. Basis element 2 contains the grass and some roofs.

4. Basis element 3 is mostly composed of another type of
road surface (including boarding and landing zones).

4.4.3 Eye image
We are given (only) four spectral images with 1040×1392
pixels (spectral bands correspond to IR, red, green, and blue
channels). [Note: The data come from the West Virginia Uni-
versity multispectral image iris database. The circle around
the pupil and the matrix inside the pupil were embedded in
the image.] The data are from the West Virginia University
multispectral image iris database28 and is part of a biometric
identification project involving Carnegie Mellon, Wake For-
est, and West Virginia, using the ocular region of the face.
Figure 19 displays the basis elements obtained with �2-NMU.
The first basis element represents the pupil, part of the iris,
and the eyelashes; the second represents some kind of sub-
structure in the iris and the skin; and the third represents the
pupil.

Segmentation and clustering multispectral eye images are
useful in the analysis of iris-recognition algorithms in bio-
metrics (see, e.g., Refs. 29 and 30). A possible way to post-
process the NMU basis elements in order to achieve cluster-
ing is to compare their support. Recall that each basis element
should represent a set of materials. Therefore, if we want to
identify these materials, then the following simple procedure
can be used:

1. Compare the supports of each pair of basis elements;
that is, compute supp(ui) ∩ supp(uj), ∀i �= j.

Fig. 19 Eye basis elements obtained with �2-NMU.
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Fig. 20 Clustering of the eye, based on the NMU decomposition.

2. Define nonempty intersections as new basis elements.
If no new basis elements are identified, then go to step
3; otherwise go back to step 1.

3. ∀i �= j such that supp(ui) ⊂ supp(uj), set supp(uj) ←
supp(uj)\supp(ui). If some basis elements have been
modified, then go back to step 1; otherwise go to
step 4.

4. Materials are identified as the remaining basis ele-
ments, which define disjoint clusters.

Note that, in practice, some kind of thresholding should
be used in order to define the supports, and the intersections
containing a small number of pixels should be considered as
empty.

In the example of Fig. 19, we have the following (after
thresholding):

supp(u1) ∩ supp(u2) ≈ ∅, supp(u3) ⊂ supp(u1) and

supp(u2) ∩ supp(u3) = ∅
so that the above procedure provides us with the clustering
displayed in Fig. 20.

5 Summary and Further Work
We have studied an approximate non-negative matrix fac-
torization (NMF) problem with underapproximation con-
straints, called non-negative matrix underapproximation
(NMU), which can be used to design a recursive procedure
to approximate non-negative data. We then gave theoretical
and experimental evidence showing that NMU is able to per-
form soft clustering of hyperspectral data. A main advantage
of NMU is that no sparsity parameters have to be tuned and
parts-based representation is naturally achieved.

In further work, it would be interesting to compare NMU
to other dimensionality reduction techniques such as PCA,
NMF, ICA, etc. (see Ref. 27). Another direction of research
would be to design automatic classification algorithms, based
on the properties of NMU, to classify the pixels; as we pro-
posed in Sec. 4.4.3. It would be particularly interesting to
study these properties in more depth and see if it is pos-
sible to obtain stronger theoretical guarantees for the fac-
tors generated by NMU. In other work, comparisons of our
NMU method will be made with the recent development of
variational iterative methods for deblurring, denoising, and
segmentation by Li et al.31, 32

Finally, NMU can be generalized to higher order tensors,
which could be called non-negative tensor underapproxima-
tion. For example, for a third-order tensor T of dimension
m×n×p, we would use a third variable z ∈ R

p
+ in order

to approximate T ≈ x ◦ y ◦ z [note: (x ◦ y ◦ z)i jk = xi y j zk].

The optimal solutions for x, y, and z separately can still be
written in closed-forms and Algorithm �2-NMU can be easily
generalized.
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